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OUTLINE

Part I
• Solar and stellar convection

• Astrophysical interest in convection
 

Part II
• Convection in A stars

• Simulations and models of convection

• Applications of such models for A stars
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Solar and Stellar Convection I

• Turbulent convection (Re, Ra ≫ 1)
–  fluid stratified by gravitational force (top-bottom)

                            ρtop < ρbottom 

–  heating at bottom and/or cooling at top
                            Ttop < Tbottom 

–  consider small vertical (“upwards”) perturbation
 

 ➔ if  ρ(displaced fluid)  <  ρ(environment)
 

  ➔ buoyancy driven instability 
     (unstable due to “large” ∇ T)

criterion first derived by K. Schwarzschild (1905)
∇ > ∇

ad
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Solar and Stellar Convection II
 Stratoscope observations of solar granulation
 

 M. Schwarzschild, ApJ 130, 345 (1959)           R.B. Leighton, ARA&A 1, 19 (1963)

  Fig. 1 upper part: frame 290, 25 Sep 1957        Fig. 1: frame 4759, 17 Aug 1959
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Solar and Stellar Convection III

• Convective instability in stars (∇ > ∇
ad

)

–  ∇rad = (3κrossPLr) / (16πacGT4Mr)

• P=pressure, Lr=luminosity(r), Mr=mass inside radius r,

T=temperature, κross=Rosseland opacity

–  high opacity (ionisation of H I, He I/II, “Fe-peak”)

• in the sun and other cool stars

–  partial ionisation ➔ low γ  (Unsöld 1931: solar H I zone)

–  high luminosity (εc =dLr/dMr~Lr/Mr for small Mr)

• in massive (hot) stars

      ➔ steep ∇ T (interacting with ∇
μ
 ➔ semi-convection)

            ➔ convective instability
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Solar and Stellar Convection IV
Massive stars
at MS

Core convection
beginning at
~ 1.2 M

⊙

opacity caused
Fe convection
zones 

R.B. Stothers 2000,
ApJ 530, L103 
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Solar and Stellar Convection V
• Physics of stellar convection

–  radiative losses, “low” viscous friction (very low Pr=ν/χ)

–  no boundary layers, “external” forces: g, magnetic field B
–  mean velocity gradient ∇ U (shear): rotation, pulsation

–  mean molecular weight gradient (Ledoux 1947:  ∇  ∇-
ad  

> ∇
μ 
) 

•  Schwarzschild & Härm (1958): semi-convection (diffusive conv.)
 

                 ∇ > ∇
ad 

 “unstable”             ∇
μ
 > 0  “stable”

  ➔ core convection of massive stars: ∇  ∇-
ad  

> (K
c
/K

h
) ∇

μ 
 

•  Stothers & Simon (1969), Ulrich (1972): salt-fingers         
  (inverse μ-gradient,  thermohaline conv., Stern 1960)   ➔ CT1
 

                  ∇ < ∇
ad 

 “stable”             ∇
μ
 < 0  “unstable”

  ➔ binary mass transfer, shell burning: |∇
μ
|
 
> (K

h
/K

c
)(∇

ad
-∇) 



IAU Symposion 224, Poprad, Slovakia
July 10th, 2004

       CONVECTION IN STARS 8

Astrophysical Interest  I
Main effects of convection

–  heat transport; mixing mechanism; couples to mean flow, B

Convective heat transfer influences
through temperature gradients, surface inhomogeneities 

• emitted radiation, stellar atmospheres             

–  photometric colours, line profiles, chromospheric activity

 ➔ uncertainty of secondary distance indicators

     (adding to the one already introduced by primary standards)

•  stellar structure, stellar evolution                           

–  pre-main sequence tracks & post-main sequence evolution

–  main sequence location (stellar radii)

 ➔ mass determination, interpretation of observed HRD
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Astrophysical Interest II
Solar radius 

T
eff

 along PMS
and RGB

Solar models which

“match” the present

sun differ along its

evolutionary track !

Montalbán et al. 2004,
A&A 416, 1081
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Astrophysical Interest III
PMS tracks
 
different convective

efficiencies influence

• ZAMS location / radii

• PMS track shapes

• determined PMS

   masses

Montalbán et al. 2004,
A&A 416, 1081
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Astrophysical Interest IV

Convective mixing influences
via overshooting, semi-convection, concentration gradients

• evolution of convective cores ➔ stellar lifetimes           

• chemical composition                                                  

–  convection zone depth and mixing: destruction of 7Li (T
b
 ~ 2.5 × 106 K)

• late stages of stellar evolution                                        

–   H/He shell burning in final  “LTP/VTLP” phases

  ➔ white dwarf returns to AGB structure (Sakurai’s object)

–   structure and composition of progenitors of supernovae
  ➔ initial conditions for SN simulations

• effects cosmological distance indicators, production of heavy
elements, final fate of exploded / collapsed star, ...
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Astrophysical Interest V

Main sequence
life times / turn off

Effect of core OV

(overshooting)

Galaxy evolution

simulations for ages

0.5 – 2 Gyrs
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Astrophysical Interest VI
Li and Be 
abundances
7Li destruction due to

mixing at and beyond 

the bottom of a deep

convection zone

solar twin problem

Based on calculations by

F. D'Antona, J. Montalbán

2003, A&A 412, 213
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Astrophysical Interest VII

Coupling to mean fields (velocity, magnetic)
• excitation and driving of pulsation

–  studied through non-linear pulsation calculations  
 and asteroseismology 

• transport of angular momentum ➔ talk BIL1

–  stellar rotation rates ➔ effects on stellar evolution 

•  magnetic dynamos

–  solar / stellar activity ➔ chromospheric / coronal activity

                                   ➔ influence on solar / stellar wind 

•  solar cycle: 11 / 22 yr cycle, longterm cycle evolution
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Astrophysical Interest VIII

 Angular momentum transport in the sun
 Helioseismological results on internal rotation rates ➔ L-transport
 (Figure from P.A. Gilman 2000, Sol. Phys. 192, 27)
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Astrophysical Interest IX

Longitudinally
averaged angular
velocity profile 
 

a) seismological
“inversion” based on
 GONG satellite data

b-d) LES time averages:
1 time step, 1 rotation
and 10 rotation periods

(M.S. Miesch et al. 2000, ApJ 532, 593)
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Astrophysical Interest X
Sun spots
 
Figure: S.K. Solanki,
A&AR 11, 153 (2003)
 
L. Biermann
(1938, 1941)

T.G. Cowling
(1938, 1953)

➔ convective
     inhibition

Do magnetic
fields always
inhibit
convection ?
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Astrophysical Interest XI
Observations of intergranular network
   
Fields of 50..150 G in magnetograms of intergranular lanes
of quiet solar regions (Domínguez Cerdeña et al. 2003, A&A 407, 741)
   a – broad band, b – narrow band continuum; c, left plot: Fe I 6302.5; right: Fe I 6301.5 

  
  
D.O. Gough, R.J. Tayler 1966, MNRAS 133, 85

Analytical stability results for several configurations with a vertical field
component  ➔ damping for field strengths > few kG 
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Convection in A stars I
• Convection zones in A stars

–  Existence of photospheric convection due to low γ
 (H I ionisation) predicted in 1933 by H. Siedentopf
 (Astron. Nachr. 247, 297)

• Spectroscopic evidences
–  Balmer line profiles (& photometry) ➔ talk CIL1

–  line bisectors

–  line profiles (R >70000, v sin(i) < 10 km/s, ➔  poster CP2) 

–  chromospheric activity indicators (observed with FUSE)

 (disappear at Teff ~ 8300 K for MS, Simon et al.2002, ApJ 579, 800)

 ➔   photospheric, convective velocity fields exist in 
   A/Am stars (➔ topology fa: filamentary, ascending)
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Convection in A stars II
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Convection in A stars III
 Line bisectors  (data by D.F. Gray, J.D. Landstreet, as in Weiss & Kupka 1999) 
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Convection in A stars IV

• Envelope convection
–  photospheric H I convection zone

•  opacity caused (+ γ-effect), gradually disappears for late B stars

•  surface velocity fields, effects on colours for late A stars

•  suppression due to strong magnetic fields ?

–  internal He I and He II convection zone
•  primarily a  γ-effect, very weak (particularly He I)

•  He depletion  ➔ zones can disappear

–  Fe-group convection zone(s)
•  require(s) diffusion to accumulate enough Fe-peak ions

➔ diffusion calculations and predictions (➔ session D)



IAU Symposion 224, Poprad, Slovakia
July 10th, 2004

       CONVECTION IN STARS 23

Convection in A stars V

 Envelope convection zones in Am stars
 Richer et al. 2000, ApJ 529, 338; Figures below: 3 M

⊙ 
and 2 M

⊙
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Convection in A stars VI

•  Convective cores
–  point of onset around 1.2 M

⊙

–  convective overshooting 
• cluster colour distribution
• observational indicator: binary pairs MS turnoff
• internal composition, evolution at late stages

–  influence of rotation ? (likewise for envelopes !)

 ➔  simulations presented in CT2

–  Possible dynamo mechanism ? 
 ➔  simulations presented in CT2
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Convection in A stars VII

• Convective cores            (figures courtesy I.W. Roxburgh)
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Convection in A stars VIII
Matching of
binary pairs
near turn off

implications on

overshooting of

convective

cores

(figure courtesy

I.W. Roxburgh)
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Simulations and Models I

Why not “just solve Navier-Stokes equations” for stars ?

• Problem P1: High Re number flows

               Sun              Earth (PBL)    Oceans (circulation)
  L        ~ 180,000 km          ~ 1 km             ~ few 103 km
   ld        ~ 1…10 cm             ~ 1 mm             ~ 1 mm  
  Re      ~ 1010... 1014            ~ 108                 ~ 1012         

  Pr       ~ 10-6 ... 10-10                    ~ 0.7                 ~  6
    

• Problem P2: long time scales involved
Sun:         few sec  -  minutes  -  1 month -  ~106 a
Oceans: ~0.1 sec  -  few decades  -  > ~102 a
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Simulations and Models II

• Averages
–  volume average interpretation of f(t,x,y,z) 

 to compute most important length scales

 ➔  Large Eddy Simulations (LES)
       (numerical simulations with realistic microphysics)

        A-Stars: ➔ CIL2, CT2, CT3

–  ensemble average interpretation of f(t,x,y,z) 
 to compute <f(t,x,y,z)>, ...

 ➔  Convection (& Turbulence) Models
 ➔  Fconv (heat flux), Pturb (turbulent pressure), vrms (flow velocity)

 No rigorous theory exists for this approach !  ➔ CKNS, CP1



IAU Symposion 224, Poprad, Slovakia
July 10th, 2004

       CONVECTION IN STARS 29

Simulations and Models III
Solar Convection Zone Physics
• quasi-stationary convective shell in a rotating sphere           

–  density stratification: ~(0.2 / 3.2×10-7)         ~625,000:1

–  temperature stratification: ~(2.15×106 / 6200)    ~350:1

–  depth ~ 30% of solar radius, Ma ~ 10-4

–  Ro ~ 0.1, differential rotation ➔ magnetic fields, solar cycle & activity

• size of granulation structures at the surface ≪ r:
            D ~ 1100 km  ➔ ~2 million granules on solar surface

–  v
conv 

~ 0.3 v
sound

 (~ 2...3 km s-1),  Ro ~ 300  ➔ rotation effects indirect

–  cooling of gas at the surface (radiation into space)

 ➔ convective instability due to large ∇ T 

 ➔ cooling from above  ➔ downwards sinking “drafts” 
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Simulations and Models IV
LES simulation:
R.F. Stein,  Å. Nordlund
Astrophys. Jour. 499, 914 (1998)
 

resolution: 253 × 253 × 163
(6 Mm × 6 Mm × 3 Mm)
 

intensity at CH G band (visual)
smoothed with telescope
modulation transfer function
 

Observations: 
La Palma Swedish
Vacuum solar telesope,
3 slides
separated by 1 min each
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Simulations and Models V

LES simulation:
 

M.S. Miesch et al. 
ApJ 532, 593 (2000)
 

98 × 256 × 512 (r,θ,ϕ)
0.62 R

sun
  – 0.96 R

sun

  

top row:   upper zone

 mid row:  centre

bottom:  overshooting 
      
Note varying colour scale! 
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Simulations and Models VI
Drawbacks of the simulation approach

–  too high computational costs (CFL ~ uflow, csound) for

• integral properties (GAIA survey: spectra for millions of stars)

• models of complete physical systems: the sun, cluster of stars,
and their long term evolution

–  for realistic flows: uncertainties due to 

• small scale properties: particularly in case of shear flow and/or
convectively stable stratification (overshooting)

• boundary conditions / configurations (magnetic field...)

• idealised microphysics and filtering methods introduced to make
simulations of stellar interiors convection affordable

–  statistical interpretation  ➔ long run time / many runs
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Simulations and Models VII

Drawbacks of the modelling approach
–  if tested for one type of flow and a range of Re, Pr,...   

 ➔ it may not work for other cases !

–  homogeneous turbulence: rather general model exists  
 (V.M. Canuto & M.S. Dubovikov, Phys. Fluids 8, 571 (1996))

 ~100 tests (lab data, simulations) successfully passed           

–  but astrophysical and geophysical flows are inhomogeneous
 (boundary conditions, compressibility, phase transitions, radiation, …)

 ➔ extensions have to be tested with observed data and simulations

 ➔ as of now limited to restricted classes of problems or of low accuracy

–  new geophysical models explicitly account for topology, ...
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Simulations and Models VIII

• Local and non-local models
–  non-linearity and non-locality of the NSE/their solutions  ➔

 moment expansion ➔ equations for moments form an infinite
 hierarchy  ➔  additional (“closure”) assumptions necessary
 

–  local models: Fconv = f [local mean structure], ... 
                       MLT (Biermann 1932), FST (CM/CGM), ...
 

–  non-local models: differential equations for low order 
 moments (Fconv , ...), closed at higher order
         Xiong (1978, 1985, 1997), Canuto (1992/93/97/98,2001)
 

–  testing strategy: calibrate once, check for others (LES, 
 observations), no “tuning” later on



IAU Symposion 224, Poprad, Slovakia
July 10th, 2004

       CONVECTION IN STARS 35

Applications I

• Stellar envelope computations 
–  non-local (Reynolds stress) model Canuto et al. (1992, '93, '94, '98, 2001)

 (most sophisticated model available 3 years ago)

–  realistic microphysics: EOS P(ρ,T), opacities

–  spherical geometry, adaptive grid 

–  200 grid points (mass shells) from τRoss~10-3 to T(R)~105 K

–  placed within sufficiently deep stable boundary layers 

–  for A-type stars along the main sequence with various metallicites,
 and for models along an “evolutionary track”
         (Kupka & Montgomery 2002, MNRAS 330, L6)

–  for DA and DB type white dwarfs (DA: 100% H, DB: 100% He)  
         (Montgomery & Kupka 2004, MNRAS 350, 267)



IAU Symposion 224, Poprad, Slovakia
July 10th, 2004

       CONVECTION IN STARS 36

Applications II
• Results for A4 V to A9 V (Teff 8500 K ... 7200 K)

–  slow merging of H I/He I & He II instability zones

–  efficient convection sets in only for late A stars

•  implied from photometry and  2D simulations 

–  high photospheric velocities (v(τsurf)~3-4 km s-1)

•  from spectroscopy and  2D simulations (obtained: ~1.5-2 km s-1)

–  interaction of He I & He II instability zones
•  connected in terms of the velocity field  

•  “separated” in terms of Fconv, temperature field
 (in the sense of becoming very small inbetween)

•  supported by 2D simulations
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Applications III
Differences of

“old” and “new”

EOS in H I &

He I zones

➔ interpretation

of differences

requires some

caution...

limits comparison in

Kupka & Montgomery

2002, MNRAS 330, L6
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Applications IV
Convective flux

in units of input

flux for an A4 V

to A5 V star

2D simulations, MLT

& non-local model

results discussed in

Kupka & Montgomery

2002, MNRAS 330, L6
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Applications V
Vertical rms

velocity for an

A4 V - A5 V star

2D simulations, MLT

& non-local model

results discussed in

Kupka & Montgomery

2002, MNRAS 330, L6
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Applications VI
Horizontal rms

velocity for an

A4 V - A5 V star

2D simulations &

non-local model

results discussed in

Kupka & Montgomery

2002, MNRAS 330, L6
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Applications VII
• Results for A4 V to A9 V part II

 

–   photospheric S w > 0, filling factor < 1/2 
•  consistent with observed line profiles

–  overshooting below He II zone
•  along MS ~0.45 Hp ...0.6 Hp (below limit from 2D simulations)

–  MLT α to recover maximum of Fconv in H I zone:

•  for Teff = 8000 K ... ~0.4,  for Teff = 7100 K ... ~1.0

•  different set of α (>1.5) required for He II zone 

•  in full agreement with 2D simulations

–  similar for other metallicities, ...
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Applications VIII
• For DA white dwarfs, Teff 12200 K …13400 K

–  H I convection zone with large overshoot around

•  effective MLT: α ~1.7 (as in 2D simulations !)

•  OV below containing 10x above lying mass (2D simulations: 100x)

•  photospheric velocities: τsurf ~4-5 km s-1 (Ma ~ 1/3, ~2D simulations)

• For DB white dwarfs, Teff 28000 K … 35000 K
–   for < 30000 K: two strongly coupled zones (He I + He II)        

–   for > 30000 K: single He II convection zone 

•  but no suitable data from simulations for tests...

• Velocity “bumps” already indicate limitations...
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Applications IX
Convective flux

in units of input

flux for a hot

DA white dwarf

2D simulations, MLT

& non-local model

results discussed in

Montgomery & Kupka

2004, MNRAS 350, 267
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Applications X
Vertical rms

velocity for a hot

DA white dwarf

2D simulations, MLT

& non-local model

results discussed in

Montgomery & Kupka

2004, MNRAS 350, 267
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Applications XI
Horizontal rms

velocity for a hot

DA white dwarf

2D simulations &

non-local model

results discussed in

Montgomery & Kupka

2004, MNRAS 350, 267
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Applications XII
• For deep convection zones such as in the sun...

–  comparison with simulations

• model cannot reproduce higher (third) order moments     

–  analysis recovers: previous cases had small skewness

–  solar granulation simulations, deep/adiabatic convection:

• models have to cope with varying & large skewness

–  large skewness related to flow topology

• result of boundary conditions and non-locality

• leads to inhomogeneity of the flow: up-/downdrafts

–  a “more universal” model should account for that...
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Applications XIII
Flux of temperature

fluctuations for an

“A-star like”

convection zone

3D simulations,

GH 2002 model,

previous model

simulation data from

Muthsam et al. 1995,

A&A 293, 127
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Applications XIV
Flux of temperature

fluctuations for

solar granulation

3D simulations &

GH 2002 model

simulation data courtesy

F.J. Robinson, see

Robinson et al. 2003,

MNRAS 340, 923
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Applications XV

• Gryanik/Hartmann model 
–  from analysis of PBL (planetary boundary layer) aircraft data

–  coherent structures

•  contribute most to higher order moments ➔ skewness 

–  “ballistic limit” (up-/downdrafts) ➔ large skewness 

–  assumes a linear interpolation
• between quasi-Gaussian limit for zero skewness (previous model)

• and the ballistic limit 

 ➔ yields expressions for closing model at 4th order

–  a model requires tests   ➔ aircraft & LES data for PBL
                                       ➔ results are surprisingly good...
(V.M. Gryanik, J. Hartmann, 2002, J. Atm. Sci. 59, 2729)  
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Applications XVI

• Summary of test results so far 
–  model performs as well for solar granulation as for the PBL

 (and likewise for simulation data by Muthsam, Chan & Sofia; ocean data)

–  differences to PBL such as
•  compressibility, EOS/microphysics, boundary conditions

 ➔ are not so important...

–  some shortcomings 
•  performance when coupled to complete model ?  Currently tested...

•  less good in OV / superadiabatic layer: flow topology changes...

•  accuracy: order of magnitude better, but “5%” remains impossible

•  quite a bit more expensive (number of DEs) than previous models
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 ...THE END

    
   


