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OUTLINE

Part |
e Solar and stellar convection
e Astrophysical interest in convection

Part |l

e Convection in A stars

e Simulations and models of convection
e Applications of such models for A stars
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Solar and Stellar Convection |

e Turbulent convection (Re, Ra > 1)

— fluid stratified by gravitational force (top-bottom)
ptop < pbottom

— heating at bottom and/or cooling at top
T..<T

top bottom

— consider small vertical (“upwards”) perturbation
= if p(displaced fluid) < p(environment)

= buoyancy driven instability
(unstable due to “large” V T)

criterion first derived by K. Schwarzschild (1905)
V> Vad
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Solar and Stellar Convection ||

Stratoscope observations of solar granulation
M. Schwarzschild, Apd 130, 345 (1959)
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Fig. 1 upper part: frame 290, 25 Sep 1957 Fig. 1: frame 4759, 17 Aug 1959
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Solar and Stellar Convection Il

o Convective instability in stars (v>v )
— V.,=(3k,PL)/ (16macGT*M)

« P=pressure, L =luminosity(r), M.=mass inside radius r,
T=temperature, K ___..=Rosseland opacity

ross

oSS
— high opacity (ionisation of H I, He l/ll, “Fe-peak”)

* in the sun and other cool stars
— partial ionisation = low y (Unsold 1931: solar H | zone)

— high luminosity (e, =dL/dM~L /M. for small M)
* in massive (hot) stars
> steep V T (interacting with VM =» semi-convection)

= convective instability
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Solar and Stellar Convection IV

Massive stars
at MS

Core convection
beginning at
~1.2 M@

opacity caused
Fe convection
Zones

R.B. Stothers 2000,
Apd 530, L103
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Solar and Stellar Convection V

e Physics of stellar convection
— radiative losses, “low” viscous friction (very low Pr=v/x)
— no boundary layers, “external” forces: g, magnetic field B
— mean velocity gradient V U (shear): rotation, pulsation

— mean molecular weight gradient (Ledoux 1947: V-V_ > VM)

* Schwarzschild & Harm (1958): semi-convection (diffusive conv.)
V>V_ “unstable” VM > (0 “stable”

=» core convection of massive stars: V-V_ > (KC/Kh) \%

e Stothers & Simon (1969), Ulrich (1972): sali-fingers
(inverse u-gradient, thermohaline conv., Stern 1960) = CT1

V<V _ “stable” VM <0 “unstable’
=» binary mass transfer, shell burning: |VM| > (Kh/KC)(Vad-V)

u
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Astrophysical Interest |

Main effects of convection
— heat transport; mixing mechanism; couples to mean flow, B

Convective heat transfer influences
through temperature gradients, surface inhomogeneities

® emitted radiation, stellar atmospheres

— photometric colours, line profiles, chromospheric activity
=» uncertainty of secondary distance indicators
(adding to the one already introduced by primary standards)

e stellar structure, stellar evolution
— pre-main sequence tracks & post-main sequence evolution
— main sequence location (stellar radii)
=» mass determination, interpretation of observed HRD
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Astrophysical Interest Il

Solar radius
T along PMS |
and RGB
1
=
Solar models which g,:.
“match” the present ~ °°
sun differ along its
evolutionary track ! 0
—0.5

Montalban et al. 2004,
A&A 416, 1081

AU Symposion 224, Poprad, Slovakia
July 10, 2004

——- FST a'=0.2, Heiter et al.02, 1_,=10

P
— ——- MLT a=1.9, a,,=1.0 AH87, T,,=100 P
C_ MLT a=6.3. a,, =05, *,=100 :

MLT ﬂ=2—31 a‘al_'l'h:ﬂ'ﬁ’ Tp]'l.= 10
e MLT &=1.95, &uum=0.5. T u=1
MLT a«=1.5, grey

1.0 M, [M/H]=0.0

| (] Il 1 (] | 1 i 1 1 |

3.75 3.
log Ty

CONVECTION IN STARS




Astrophysical Interest Il
PMS tracks
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Astrophysical Interest IV

Convective mixing influences
via overshooting, semi-convection, concentration gradients

® evolution of convective cores = stellar lifetimes

® chemical composition
— convection zone depth and mixing: destruction of 'Li (T, ~ 2.5 x 10° K)

® |ate stages of stellar evolution
— H/He shell burning in final “LTP/VTLP” phases
= white dwarf returns to AGB structure (Sakurai’s object)

— structure and composition of progenitors of supernovae
=>» initial conditions for SN simulations

« effects cosmological distance indicators, production of heavy
elements, final fate of exploded / collapsed star, ...
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Astrophysical Interest V

Main sequence
I |fe t| mes / turn Off . isochTones from v‘erlnura etal. 199|.3_. A+A 334, 9?3; Y=0.27, z='a.m7

25
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$ i
Galaxy evolution = 0T "
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0.5-2Gyrs gL TrRemGY —x ~ ]

HiE 2 Gyrs, no OV e , \ ;
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Astrophysical Interest VI

LI and Be
abundances

"Li destruction due to
mixing at and beyond
the bottom of a deep
convection zone

solar twin problem

Based on calculations by
F. D'Antona, J. Montalban
2003, A&A 412, 213
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Astrophysical Interest VII

Coupling to mean fields (velocity, magnetic)

e excitation and driving of pulsation

— studied through non-linear pulsation calculations
and asteroseismology

e transport of angular momentum = talk BIL1
— stellar rotation rates =» effects on stellar evolution

® magnetic dynamos

— solar / stellar activity =» chromospheric / coronal activity
=» influence on solar / stellar wind

® solarcycle: 11 /22 yr cycle, longterm cycle evolution
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Astrophysical Interest VIII

Angular momentum transport in the sun

Helioseismological results on internal rotation rates =» L-transport
(Figure from P.A. Gilman 2000, Sol. Phys. 192, 27)
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Astrophysical Interest IX

Longitudinally ; e
averaged angular @ “§
velocity profile

a) seismological
“inversion” based on
GONG satellite data

b-d) LES time averages:
1 time step, 1 rotation
and 10 rotation periods

(M.S. Miesch et al. 2000, ApJ 532, 593)
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Figure: S.K. Solanki,

AZAR 11, 153 (2003) 4

L. Biermann
(1938, 1941)

T.G. Cowling

(1938, 1953)

= convective
Inhibition

Do magnetic
fields always
inhibit

convection ?

Fiz. L.L. images recorded in 2 mughly L0 & wide band centeed on 4306 A  g-band) of a relatively
mgular sunspot | fap) and a more corplex sunapot(borram). The central, dark part of the sunspots
5 the urnbe, the radially strated part is the penumb@. The surmunding bright cells with dack
boundaries am ganular comection cells, The wppersunspot has 1 maximum diameter of ppoos-
irnately X000 kr, the lower sunapot of roughly 50000 ko (upper image courtesy of T Berger,
loweer o age taken by O, won der Liihe, B, Sailer, T Rirommoela).
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Astrophysical Interest XI

Observations of intergranular network

Fields of 50..150 G in magnetograms of intergranular lanes

of quiet solar regions (Dominguez Cerdena et al. 2003, A&A 407, 741)
01.5

B, [G]

D.O. Gough, R.J. Tayler 1966, MNRAS 133, 85

Analytical stability results for several configurations with a vertical field
component = damping for field strengths > few kG
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Convection In A stars |

e Convection zones In A stars

— Existence of photospheric convection due to low y
(H | ionisation) predicted in 1933 by H. Siedentopf
(Astron. Nachr. 247, 297)

e Spectroscopic evidences
— Balmer line profiles (& photometry) = talk CIL1
— line bisectors
— line profiles (R >70000, v sin(i) < 10 km/s, & poster CP2)

— chromospheric activity indicators (observed with FUSE)
(disappear at T, ~ 8300 K for MS, Simon et al.2002, ApJ 579, 800)

= photospheric, convective velocity fields exist in
A/Am stars (= topology fa: filamentary, ascending)
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Convection In A stars Il
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Convection In A stars Il

Line bisectors (data by D.F. Gray, J.D. Landstreet, as in Weiss & Kupka 1999)
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Convection In A stars IV

e Envelope convection

— photospheric H | convection zone
e opacity caused (+ y-effect), gradually disappears for late B stars
e surface velocity fields, effects on colours for late A stars
* suppression due to strong magnetic fields ?
— Internal He | and He |l convection zone
e primarily a y-effect, very weak (particularly He I)
e He depletion =» zones can disappear
— Fe-group convection zone(s)
* require(s) diffusion to accumulate enough Fe-peak ions

=» diffusion calculations and predictions (= session D)
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Convection In A stars V

Envelope convection zones in Am stars
Richer et al. 2000, ApdJ 529, 338; Figures below: 3 M@ and 2 M@
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Convection In A stars VI

e Convective cores
— point of onset around 1.2 M_

— convective overshooting
e cluster colour distribution
 observational indicator: binary pairs MS turnoff
e internal composition, evolution at late stages

— influence of rotation ? (likewise for envelopes !)
= simulations presented in CT2

— Possible dynamo mechanism ?
= simulations presented in CT2
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Convection In A stars VI

e Convective cores (figures courtesy I.W. Roxburgh)

X K_ L‘rad
= AN - ' L.

nuc

Unstable i Stable Radiative
: Envelope
Convective
Core
: [ = r->
-/‘7;/
Fig. 1. Variation with radius of the su- Fig. 2. Variation with radius of the lu-
peradiabatic gradient AV in a Cowling minosities Lyad, Leone; and the total ln-
model with overshooting. In the over- minesity Laue- Leons goes negative in
shoot region AV remains small and neg- the overshoot region so that L,.,a ex-
ative before adjusting to large negative ceeds the total luminosity L, uc.
values.
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Convection In A stars VIII

Matching of 2.0

binary pairs —|— 572 Cen 232 M,
near turn off =

2.32 M,

=
o
T o
Implications on b
1

overshooting of 2.275 M
convective - Sl
cores 2.275 M,
Standard Overshooting
(figure courtesy | l | [
|.W. Roxburgh
gh) 3.8  Log T,
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Simulations and Models |

Why not “just solve Navier-Stokes equations” for stars ?

e Problem P1: High Re number flows

Sun Earth (PBL) | Oceans (circulation)
L ~ 180,000 km ~ 1 km ~ few 108 km
l ~1...10cm ~ 1 mm ~1 mm
Re | ~10'"... 10" ~ 108 ~ 102
Pr ~10%... 107 ~ 0.7 ~ 6

e Problem P2: long time scales involved
Sun: few sec - minutes - 1 month - ~10¢ a
Oceans: ~0.1 sec - few decades - >~102a
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Simulations and Models Il

e Averages

— volume average interpretation of f(t,x,y,z)
to compute most important length scales

2 Large Eddy Simulations (LES)
(numerical simulations with realistic microphysics)
A-Stars: = CIL2, CT2, CT3

— ensemble average interpretation of f(t,x,y,z)
to compute <i(t,x,y,z)>, ...

= Convection (& Turbulence) Models
2> F_., (heatflux), P, . (turbulent pressure), v, . (flow velocity)

NoO rigorous theory exists for this approach ! = CKNS, CP1
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Simulations and Models Il

Solar Convection Zone Physics

® quasi-stationary convective shell in a rotating sphere
— density stratification: ~(0.2 / 3.2x107) ~625,000:1
— temperature stratification: ~(2.15x10° / 6200) ~350:1
— depth ~ 30% of solar radius, Ma ~ 10™
— Ro ~ 0.1, differential rotation =» magnetic fields, solar cycle & activity
® size of granulation structures at the surface < r:
D~ 1100 km = ~2 million granules on solar surface
—vVv_~03v_ (~2.3kms"), Ro~300 = rotation effects indirect

— cooling of gas at the surface (radiation into space)
=» convective instability due to large V T
=» cooling from above =» downwards sinking “drafts”

AU Symposion 224, Poprad, Slovakia CONVECTION IN STARS 29
July 10, 2004



Simulations and Models IV

LES simulation:

R.F. Stein, A. Nordlund
Astrophys. Jour. 499, 914 (1998)

resolution: 253 x 253 x 163
(6 Mm x 6 Mm x 3 Mm)

Simulation

S

intensity at CH G band (visual)
smoothed with telescope
modulation transfer function

L
—
=
_I_

']
—
——

=

Simu

Observations:

La Palma Swedish
Vacuum solar telesope,
3 slides

separated by 1 min each

Observed
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Simulations and Models V

Radial Velocity ggﬁﬂ?ﬂiﬁgﬁ Radial Vorticity

downflow o upflow coo o I o positive

LES simulation:

M.S. Miesch et al.
Apd 532, 593 (2000)

98 x 256 x 512 (r,0,¢)
0.62R_ -096R__

top row: upper zone
mid row: centre
bottom: overshooting

Note varying colour scale!
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Simulations and Models VI

Drawbacks of the simulation approach

— too high computational costs (CFL ~ u,,, C.,,.4) fOr

o integral properties (GAIA survey: spectra for millions of stars)
* models of complete physical systems: the sun, cluster of stars,
and their long term evolution
— for realistic flows: uncertainties due to

« small scale properties: particularly in case of shear flow and/or
convectively stable stratification (overshooting)

e boundary conditions / configurations (magnetic field...)
 idealised microphysics and filtering methods introduced to make
simulations of stellar interiors convection affordable

— statistical interpretation = long run time / many runs

AU Symposion 224, Poprad, Slovakia CONVECTION IN STARS 32
July 10, 2004



Simulations and Models VI

Drawbacks of the modelling approach

— if tested for one type of flow and a range of Re, Pr,...
=» It may not work for other cases !

— homogeneous turbulence: rather general model exists
(V.M. Canuto & M.S. Dubovikov, Phys. Fluids 8, 571 (1996))
~100 tests (lab data, simulations) successfully passed

— but astrophysical and geophysical flows are inhomogeneous
(boundary conditions, compressibility, phase transitions, radiation, ...)

=» extensions have to be tested with observed data and simulations
=>» as of now limited to restricted classes of problems or of low accuracy

— new geophysical models explicitly account for topology, ...
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Simulations and Models VI

e | ocal and non-local models

non-linearity and non-locality of the NSE/their solutions =
moment expansion = equations for moments form an infinite
hierarchy = additional (“closure”) assumptions necessary

local models: F_,,, = f [local mean structure], ...
MLT (Biermann 1932), FST (CM/CGM), ...

non-local models: differential equations for low order
moments (F_,,.,, --.), closed at higher order

Xiong (1978, 1985, 1997), Canuto (1992/93/97/98,2001)

testing strategy: calibrate once, check for others (LES,
observations), no “tuning” later on
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Applications |

e Stellar envelope computations

— non-local (Reynolds stress) model Canuto et al. (1992, '93, '94, '98, 2001)
(most sophisticated model available 3 years ago)

— realistic microphysics: EOS P(p,T), opacities

— spherical geometry, adaptive grid

— 200 grid points (mass shells) from t,..~10°to T(R)~10° K
— placed within sufficiently deep stable boundary layers

— for A-type stars along the main sequence with various metallicites,

and for models along an “evolutionary track”
(Kupka & Montgomery 2002, MNRAS 330, L6)

— for DA and DB type white dwarfs (DA: 100% H, DB: 100% He)
(Montgomery & Kupka 2004, MNRAS 350, 267)
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Applications Il

o Results for A4 V to A9 V (T, 8500 K ... 7200 K)

— slow merging of H I/He | & He Il instability zones
— efficient convection sets in only for late A stars
* implied from photometry and 2D simulations
— high photospheric velocities (v(t, )~3-4 km s7)
e from spectroscopy and 2D simulations (obtained: ~1.5-2 km s7)
— Interaction of He | & He Il instability zones
* connected in terms of the velocity field

e “separated”in terms of F__ , temperature field
(in the sense of becoming very small inbetween)

* supported by 2D simulations
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Applications Il

Differences of
“old” and “new’

T,4=8000 K, log(g)=4 .4, Z=solar, EOS/opacities: OPAL(non-local) vs. ATLASE (2D)

1.7
EOSinH & e - -
He | zones 6 f '
1.55 % -
. . 1.5 1 |
=>» interpretation < | | |
of differences Ll |
requires some 1 | )
caution... R poe |
f | ' non-local model from MNRAS
1.25 [ 2D simulations at80g44ns -
) ) ) ) 2D simulations at80g44nt
limits comparison in .2 : . | | .
3.8 4 4.2 4.4 4.6 4.8 5 52
Kupka & Montgomery log TI]
2002, MNRAS 330, L6
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Applications IV

Convective flux
In units of input
flux for an A4 V
to AS V star

2D simulations, MLT
& non-local model

Foonv'Frotiom: €nthalpy flux / total flux

results discussed in
Kupka & Montgomery
2002, MNRAS 330, L6

AU Symposion 224, Poprad, Slovakia
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Applications V

Vertical rms
velocity for an
A4V - A5V star

2D simulations, MLT
& non-local model

vertical rms velocity [km 5'1]

results discussed in
Kupka & Montgomery
2002, MNRAS 330, L6

AU Symposion 224, Poprad, Slovakia
July 10, 2004

A-star envelope, T,4=8000 K, log(g.,)=4.4, solar metallicity Z

I I T T
non-local, FK+MHM, MNRAS 330, L6 (2002) —+—
//"»‘\ nan-local, Canuto et al. 2001 model for TOMs
2D simulation at80g44n6 (B. Freytag) - #---

MLT, I=0.36 H, @

log T[K] along radius
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Applications VI

Horizontal rms
velocity for an
A4V - A5V star

2D simulations &
non-local model

horizontal rms velocity [km 5'1]

results discussed in
Kupka & Montgomery
2002, MNRAS 330, L6

AU Symposion 224, Poprad, Slovakia
July 10, 2004

A-star envelope, T,4=8000 K, log(g,, /=4.4. solar metallicity Z

1 1 1
non-local, FK+MHM, MNRAS 330, L6 (2002) —+—
non-local, Canuto et al. 2001 model for TOMs
2D simulation at80g44n6 (B. Freytag) ---%---

& "'s-., ¢ \ -
| 1 ! ‘Jk B
3.8 4.2 4.4 4.6 4.8 5
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Applications VII
e Results for A4 V to A9 V part Il

— photospheric S, > 0, filling factor < 1/2

* consistent with observed line profiles
— overshooting below He |l zone

e along MS ~0.45 H_ ...0.6 H_ (below limit from 2D simulations)
— MLT o to recover maximum of F___, in H | zone:

e forT,,=8000K...~0.4, forT,=7100K ... ~1.0

o different set of a (>1.5) required for He |l zone
* in full agreement with 2D simulations

— similar for other metallicities, ...
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Applications VIII

e For DA white dwarfs, T, 12200 K ...13400 K

— H | convection zone with large overshoot around
o effective MLT: o ~1.7 (as in 2D simulations !)
* QV below containing 10x above lying mass (2D simulations: 100x)
e photospheric velocities: t_ ; ~4-5 km s (Ma ~ 1/3, ~2D simulations)

e For DB white dwarfs, T, 28000 K ... 35000 K

— for < 30000 K: two strongly coupled zones (He | + He Il)
— for > 30000 K: single He |l convection zone
* but no suitable data from simulations for tests...

e Velocity “bumps” already indicate limitations...
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Applications IX

Convective flux
i n un |tS Of | N p ut | DA uT'hite dwarT.I T,+=13000 K, log(g)=8, WD type EOS/Z (no He)

Ul DA non-iocal model (new OPAL/LLNL tables)
f|UX fOI‘ d hOt 2D simulation 21130G80n2 (B. Freytag)
01 - 2D simulation zt130g80n3 (B. Freytag)
DA white dwarf &
§ 008 .
zi‘ 0.06 | 4
2D simulations, MLT =~ ¢ oo} fF :
& non-local model g vl
2 ' / )
. . : 0F  ommm—m -v""‘/ \‘"‘*m#m» - s -
results discussed in

Montgomery & Kupka 0,02

1 1 1 Il i Il l ]
39 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

2004, MNRAS 350, 267 log TIK]
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Applications X

Vertical rms
Ve IOCity for a hot DA white dwarf, T,z=13000 K, log(g)=8, WD type EOS/Z (no He)

2D simulation 21130g80n3 (B. Freytag)

D h .t d f : ' I DA non-local model (new OFI'AI_-'LL_N!: taolles)
A wniie awar ooy 2D simulation 21130g80n2 (B. Freytag)

o
T

&
T

1]
T

2D simulations, MLT
& non-local model

vertical mean square velocity aw?shE [km 5'1]
o
¥

1 iy
results discussed in
Montgomery & Kupka S a2 a3 44 a5 “ao - 4.7
2004, MNRAS 350, 267 e
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Applications XI

Horizontal rms
velocity for a hot
DA white dwarf

w

i

2D simulations &
non-local model

horizontal mean sguare velocity st [km 5'1]
w

ey

results discussed in
Montgomery & Kupka 0
2004, MNRAS 350, 267

AU Symposion 224, Poprad, Slovakia
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DA white dwarf, T,z=13000 K, log(g)=8, WD type EOS5/Z (no He)

M

DA nan-local model (new OPAL/LLNL tables)

2D simulation zt130g80n2 (B. Freytag)
2D simulation z1130g80n3 (B. Freytag)

4.|1 4!2 4.=3 4?4 415 4.6 e —:‘T? 4.8
log TIK]
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Applications XI|

e For deep convection zones such as in the sun...
— comparison with simulations
e model cannot reproduce higher (third) order moments
— analysis recovers: previous cases had small skewness
— solar granulation simulations, deep/adiabatic convection:
e models have to cope with varying & large skewness
— large skewness related to flow topology
e result of boundary conditions and non-locality
e leads to inhomogeneity of the flow: up-/downdrafts
— a “more universal” model should account for that...
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Applications XII|

Flux of temperature
fluctuations for an
“A-star like”
convection zone

3D simulations,
GH 2002 model,
previous model

{W[F;.

simulation data from
Muthsam et al. 1995,
A&A 293, 127

AU Symposion 224, Poprad, Slovakia
July 10, 2004

model 3J, Pr=1, stable-unstable-stable, max(F_,,,,)=25%, idealised microphysics

6&‘!‘0? 1 ] i ]
3D Sirr}ulatiqns, H. Muthsam —+—
i <Wi>"<il">/<t"> using 3D data
R present model using 3D data ---#%---
e - l— 4 -
» '
2e+07 - o
4 oA .-
[ e s e e W "'t -:. ?( **x*wwmm
"'.I ,: " ;,-' . |
ki ] |
-2e+07 |- § j.(*x’*".‘ %; ', |
- SO f
L T d Yoo
-48407 |- i EJ%FH_A;J '. |
.:I j |II III
60407 b + 4
YO |I |
s \ I|I
1
-8e+07 s |
\ 4
\/
-1e4+08 [] L | | ! [] ! | |
10 20 30 40 50 B0 70 80 a0 100
linear depth: top=0, bottom=100
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Applications XIV

Flux of temperature
fluctuations for
solar granulation

3D simulations &
GH 2002 model

w02/ ![c;".l'.r‘?:rﬁ'5 «:[J’E:v}

simulation data courtesy
F.J. Robinson, see
Robinson et al. 2003,
MNRAS 340, 923

AU Symposion 224, Poprad, Slovakia
July 10, 2004

solar granulation, case D from Robinson et al. 2003, MNRAS 340, 923

] 1
normalised TOM(LES)
0.5 |-
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-2 | | | § 1 1
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depth in In(P) [cgs units]
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Applications XV

e Gryanik/Hartmann model
— from analysis of PBL (planetary boundary layer) aircraft data
— coherent structures
» contribute most to higher order moments = skewness
— “pallistic limit” (up-/downdrafts) =& large skewness

— assumes a linear interpolation
» between quasi-Gaussian limit for zero skewness (previous model)
« and the ballistic limit
2 vyields expressions for closing model at 4" order

— a model requires tests = aircraft & LES data for PBL

= results are surprisingly good...
(V.M. Gryanik, J. Hartmann, 2002, J. Atm. Sci. 59, 2729)
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Applications XVI

e Summary of test results so far

— model performs as well for solar granulation as for the PBL
(and likewise for simulation data by Muthsam, Chan & Sofia; ocean data)

— differences to PBL such as
» compressibility, EOS/microphysics, boundary conditions
= are not so important...
— some shortcomings
« performance when coupled to complete model ? Currently tested...
* less good in OV / superadiabatic layer: flow topology changes...
e accuracy: order of magnitude better, but “5%” remains impossible
e quite a bit more expensive (number of DES) than previous models
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...THE END
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